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MULTIMODAL INTEGRATION VIA NETWORKS

Computational Modeling
MEG/EEG
AEC THE STRUCTURE-FUNCTION QUESTION
F;LL « FC = Statistical corr of signals from 2 regions
« Anatomic = structural connectivity (SC)
* The exact relationship between FC and anatomic
connectivity is an unresolved, major question
« SC = FC, but NOT vice versa
« Can math models predict FC, given SC¢
dMRI &

Key ideas in this lecture:

1) Connectivity graph is an excellent medium for cross-modality integration

2) Need math/graph models rather than statistical associations

2) Simple, linear network models can capture SC-FC better than non-linear generative models




Diffusion map:
Field of view: 256x256mm? with an in plane resolution
of 2x2 mm?® and 30 slices of 3mm thickness. Diffusion
probability density function sampled with a 3D isotropic
field of view of 100 um and resolution of 10 um.

X \
~3x10° fibers traversing the white 500-4000 Regions of Interest (ROIs)
matter and connecting different covering the WGM interface. Each ROI has
regions of white matter and gray similar surface
matter (WGM) interface S

Weighted network of brain connectivity:
500-4'000 nodes, 26'000-100'000 edges

Mapping Human Whole-Brain Structural Networks with Diffusion MRI
Patric Hagmann, Maciej Kurant, Xavier Gigandet, Patrick Thiran, V&
Philippe Thiran, PLoS ONE 2(7) ‘ JE—




Abdelnour, Voss, Raj. Network diffusion accurately
Cr(terit) = exp(—BLLerit)- models the relationship between structural and
functional brain connectivity networks.
Neurolmage 2014
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ECTRAL" GRAPH THEORY OF SC-FC
SC and FC are related by graph spectra (eigens)
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INVITED
e PAPER

A Graph Signal Processing
Perspective on Functional
Brain Imaging

By WEeivu HuaNnGg, THoMmAas A. W. BoLToN"™, STUDENT MEMBER IEEE JOHN D. MEDAGLIA,
DANIELLE S. BASSETT“, ALEJANDRO RIBEIRO, AND DiMITRI VAN DE VILLE"“, SENIOR MEMBER IEEE

nature o G
COMMUNICATlONE ¥

Article OPEN Published: 21 January 2016
Human brain networks function in
connectome-specific harmonic waves

Selen Atasoy B8, |saac Donnelly & Joel Pearson

Nature Communications 7, Article number: 10340 (2016) Download Citation *

Neurolmage

Neurolmage %

5
Volume 172, 15 May 2018, Pages 728-739 ;;:”

Functional brain connectivity is predictable from
anatomic network's Laplacian eigen-structure
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Desikan-Kiliany , Elementary harmonic brain modes
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2nd eigenmode of network diffusion
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— GRAPH EIGENMODES CAN SPARSELY

REPRESENT FC

Resting state networks
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"SPECTRAL GRAPH THEORIES OF FMRI AND FC

Christopher J Honey, Rolf Kotter, Michael Breakspear, and Olaf Sporns. Network structure of cerebral cortex shapes
functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104(24):10240—
10245, 2007

Farras Abdelnour, Henning U. Voss, and Ashish Raj. Network diffusion accurately models the relationship between
structural and functional brain connectivity networks. Neurolmage, 90:335-347, 2014

Selen Atasoy, Isaac Donnelly, and Joel Pearson. Human brain networks function in connectome-specific harmonic
waves. Nature Communications, 7:10340, 2016

Farras Abdelnour, Michael Dayan, Orrin Devinsky, Thomas Thesen, and Ashish Raj. Functional brain connectivity is
predictable from anatomic network’s Laplacian eigen-structure. Neurolmage, 172:728—-739, 2018
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INTRODUCING A "COMPLEX" LAPLACIAN

Novel concept in brain graph theory

t—)t—Tl,z

Delays become phases in Fourier space: F(x(t — 71,) = X(w)e 1 712%

Hence define a complex connectivity matrix C*(w) = {cjke‘”fk‘“}
d.
where delays come from global speed constant: 7, = L

v
and the complex Laplacian
Lw|lv,a) =1 —aC*(w|v)
Define a "wavenumber” k = w/v, then we define L(k, @)

Xie, Cai, Damasceno, Nagarajan, Raj. Emergence of canonical functional
networks from the structural connectome, Neurolmage, 2021



WHAT DO THESE EIGE

NMODES LOOK LIKE?

Eigen Decompositon of Complex Laplacian

Complex Laplacian Matrix (%)

Structural Connectivity

Eigenmode U,
Matrix (C)

Adjacency Distance

compare similarity
. ) Matrix (Dj, j=vTi,j)
4}% » -
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AN EIGENMODES FIT CANONICAL FC

e A few e-modes are sufficient to predict any FCN
o Complex e-modes are better than real ones; and both are better than random conns

Fronto Somato Dorsal Ventral
parietal motor Attention Attention

Complex Laplacian
—— Real Laplacian
—— Random Connectivity
Random Distance
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Cumulative Number of Eigenmodes
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STRUCTURE-FUNCTION MAPPING

 Highlighting the eigen-mapping technique:
« Reasonable performance with very simply approach

» Exploits the relationship between the eigenvalues and eigenvectors of the FC and SC (esp latter’s
Laplacian)

« FC eigenvectors == Laplacian eigenvectors

« FC eigenvalues = func(Lap eigenvalues) Series eJlgngw
expansion -
. on Lap e- modes of
Example results Original: values + FC and
Network- rotation Lap

20 40
(b) Abdclnour, R = 0.253.

Abdelnour Tewarie Becker

(d) Becker, R = 0.626. (c) JESM, R = 0.746.
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ORRESPONDENCE USING GRAPH
SPECTRA

IMPROVING SC-FC C

Further improvements can come from better mapping between FC and SC e-values
E.Q. replace exponential decay with Gamma function

Adding latent and hard-to-measure inter-hemispheric connections between homologous regions
greatly improves performance

Future extensions could explore other data-driven mappings

after adding interhemispheric connections,
Method: gammagraph

0.4 0.6
weighting factor




CAN'MODELS FIT SPECTRAL FEATURES (0 — 0.25 HZ) OF FMRI2

Need new analysis methods!

Presenting a simple rate model for iMRI
« Signal equation

/ Frequency-response of fMRI can be explicitly \
written as sum over eigenmodes of Lap!

Eigenmodes predict spatial patterns

Each pattern has a spectral response that is a

7 ) : function of e-values %




Subject 22

Subject 37

Subject 49

RESULTS — SGM FOR FMRI

Empirical Spectra Predicted Spectra

Predicted FC R , Predicted Spectra R

DD
=
=
=

>

<
=

Frequency (Hz)

« SGM predicts both FC matrix and regional power spectra of MR

 Fitted model parameters may be interpreted as “computational biomakrkers” of brain state or
disease?

« Perhaps the first model that predicts and exploits higher-frequencies of fMRI?




IS THIS SAME AS SPECTRAL DCM?

Spectral DCM also seeks frequency-dependent generative model of MR
« DCM Signal equation

dx(t)
dt
* In Fourier domain, written as transfer function involving the cross-spectral density of x and v:

= Ax(t) + Bu(t) + v(t)

PSDy(w) = TF(w) PSD,(w)
« Usually, v is assumed an autocorrelative signal
* Both SGM and spectral DCM use spectral features of signal

« BUT: this is where similarities end
* Spectral DCM: estimate A = {a;;}
« SGM: use a known maitrix £, fit for global parameters that determine shape of spectral response
 Hence SGM seeks a structure-function model, DCM seeks effective connectivity
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MEG AND EEG: A SPECTRAL GRAPH MODEL OF HIGHER
BRAIN OSCILLATIONS

BRAIN MAPPING . [F

MAPPING
Pages 2980-2998

RESEARCH ARTICLE =~ & OpenAccess (9 @)

Spectral graph theory of brain oscillations

Ashish Raj=, Chang Cai, Xihe Xie, Eva Palacios, Julia Owen ... See all authors v

23 March 2020 | https://doi.org/10.1002/hbm.24991

Ashish Raj, PhD

Department of Radiology and Biomedical Imaging =
UCSF PR



Spectral graph theory model (SGM)

Local neural

assemblies Gee, Giir Jeis * | Macroscopic long-range
Ty i . — Excitatory (gee, Te) excitatory (7¢, @, v)

p(t) . A )\

* Str connectivity ’
AR

Frequency spectra --

Macroscopic long-
range connections
Te, A, T, U

[ S—

p(t) @ o Frequency (Hz)

Magnetoencephalography
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MODELING HIGHER FREQUENCIES — EEG/MEG

* Need to infroduce conduction speed, cortical processing delays
* The model is no longer network diffusion, strictly
« Closed form solution of s’reody state frequency behaviour

1
fe/l(t) * xe/l(t) + fe/z(t) * 2 Cjkxe/i(t - T]pk) + pe/i(t)

==

dxe/L(t)

J,k

C*(w]v) = {cjr exp(-i T/} w)}
L(w|v,a) =1 —aC” (a)|v) 4  hdongy

p(t)

h,(t)

output

elgeandeS Local neural populations Linear model

H
X(w) =y ©) ea0)P@)
]a)+ /1 (a))F @)

Raj et al. Spectral graph theory of brain
eigenvalues oscillations. Human Brain Mapping 2020

Verma et al. SGM Revisited, Neuroimage 2022
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i T T SGM correctly fits empirical MEG power spectra
" Does better than NMM

/\“ — /b — Sensitive to model parameters (need to be optimized)
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Neural Mass Model

SGM VS NEURAL MASS MODEL

Spectral Graph Model

Solved by differential equations

Proven in M/EEG and fMRI

Node-level local NMMs coupled via connectome

Can simulate neural activity on the whole brain network

Large # of coupled non-linear 29 order Diff Egns

Numerical integration used to simulate over long
model fimes

Activity and FC patterns indirectly observed from
simulations
Parameter inference is very tough

» Requires step-wise, manual or heuristic
optimization

Linear vector-valued 1st order Diff EQn
Has closed-form solution in Fourier domain!
Activity and FC directly given by solution

Going to linear does not cause loss of
performance!

» Frequently better than coupled NMMs

Parameter inference is simple and fast, no
hand-selection needed




SGM: STABILITY AND DYNAMICS

Ashish Raqj, PhD —

Department of Radiology and Biomedical Imaging
UCSF

RAJ LABORATORY, CHINA BASIN, UCSF

SNOSNA LS

1




Local neuradl
assemblies - gee, Gii

Yeir Te: Tj

Macroscopic long-
range connections -
Te, A, T, U

Structural connectivity
matrix (Diffusion MRI)

Frequency spectra --
Magnetoencephalogr

aphy




Stable Borderline stable

— Excitatory
Inhibitory

Without
noise

* |In alinear system, stability is a function strictly of model parameters, not of input noise
« Recallin nonlinear coupled NMMs, meta-/multi-stability is governed by noise
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Local neural
assemblies - gee. gii White noise
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Stability of macroscopic SGM

Simulations in Peak frequency of macro signal
different regimes

Unstable

2t6="1,

Unstable

(zH) Aouanbai




Stability and dynamics of a spectral graph model of brain|
oscillations

1732
Submission Type:

Abstract Submission

Authors:

‘ Parul Verma', Srikantan Nagarajan', Ashish Raj’
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SGM: APPLICATIONS IN NEUROLOGICAL DISEASE
(ALZHEIMER'S)

Ashish Raj, PhD _——=

Department of Radiology and Biomedical Imaging
UCSF

RAJ LABORATORY, CHINA BASIN, UCSF
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Fitted model
- parameters (with
biophysical
meaning)

* Wish to infer model parameters that give rise to given MEG, EEG and fMRI

* SGM gives a small set of only 6 biophysically interpretable global model
parameters

* Local model inferred by fitting regional frequency spectra

* Global parameters by fitting regional spectra AND spatial distributions of
different frequency bands

 Application: inferred parameters can serve as biomarkers of disease
* e.g. Schizophrenia, autism, epilepsy, Alzheimer,...

Extension: time-varying (dynamic) models to capture brain states



CAL NEURAL ASSEMBLIES — APPLICATION TO AD

« AD shows a strong down-shift in alpha band power and frequency
 Strong up-shift in delta-theta power

* First we explore local-only models

* i.e. local (mesoscopic) parameters as biomarkers

H Controls B Patients with AD
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MACROSCOPIC SGM - APPLICATION TO AD

* Fitting macroscopic SGM only (keep all local parameters uniform)

* SGM needs only 6 biophysical global parameters

Single-most important _
elgle]gle] | -
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Control
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