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MULTIMODAL INTEGRATION VIA NETWORKS

MEG/EEG fMRI

AEC,
PLL FC

SC

Computational Modeling

• FC = Statistical corr of signals from 2 regions 
• Anatomic = structural connectivity (SC)
• The exact relationship between FC and anatomic 

connectivity is an unresolved, major question
• SC è FC, but NOT vice versa
• Can math models predict FC, given SC?

Key ideas in this lecture: 
1) Connectivity graph is an excellent medium for cross-modality integration
2) Need math/graph models rather than statistical associations
2) Simple, linear network models can capture SC-FC better than non-linear generative models

THE STRUCTURE-FUNCTION QUESTION

dMRI
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Mapping Human Whole-Brain Structural Networks with Diffusion MRI
Patric Hagmann, Maciej Kurant, Xavier Gigandet, Patrick Thiran, Van J. Wedeen, Reto Meuli, Jean-
Philippe Thiran, PLoS ONE 2(7)
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A LINEAR NETWORK DIFFUSION MODEL OF ACTIVITY SPREAD 

• Between any two regions R1 and R2, the signal is x1(t) and x2(t)

• On whole brain

(rather than to the actual action potentials thereof). Although the internal
dynamics of this isolated neural population is complex and likely chaotic, in
keeping with our emphasis on simple linear models, we allow the simplest pos-
sible dynamic behavior of a damped system, given by dx1(t)/dt = −βx1(t).
This behavior is consistent with a highly damped system whose impulse re-
sponse to transient signals dies away as an exponential decay, whose rate is
controlled by the decay rate β. This behavior could arise by a number of
mechanisms; for instance the refractory period after neural discharge which
effectively acts as a damping function on the neural activation signal.

Now we expand the model to cover an isolated pair of cortical regions R1
and R2 connected by a single fiber population, whose connectivity weight is
given by c1,2. The number of firing neurons in R2 is V2x2, where V2 is the
number of voxels in R2. Of these, the number of axonal projections from
R2 to R1 is proportional to c1,2

1
δ2
V2x2, where we divide the connectivity by

the degree of R2, δ2, to get a ratio. The proportion of neurons in R1 which
experience a firing afferent from R2, assuming uniform mixing of afferents, is
then given by 1

V1
c1,2

1
δ2
V2x2. If there are no other afferents into R1, the number

of neurons which undergo activation secondary to depolarization due to the
enervating active neurons from R2, followed by super-threshold post-synaptic
integration, will in general depend in a highly complicated and non-linear
fashion, well-characterized by the neural mass equations. However, under the
emergent linear assumption, the net change in the number of firing neurons in
R1 may be considered a linear proportion of the number of active enervating
neurons from R2. After accounting for the internal first order dynamics of
R1, this gives

dx1(t)

dt
= β

(
1

V1
c1,2

1

δ2
V2x2(t)− x1(t)

)
(2)

There is, of course, no reason why the rate constant β should be identical for
both the internal and external signals contributing to the dynamics of R1,
but in the interest of simplicity and in the absence of evidence to the contrary
we have assumed identical rates. This then is the first order dynamics of an
isolated pair of neuronal populations. For multiple afferents into R1, we
modify this to

dxi(t)

dt
= β

(
1

Vi

∑

j

ci,j
1

δj
Vjxj(t)− xi(t)

)
. (3)

Since the regional parcellation in fMRI-based functional networks is some-

6

what arbitrary, the regional volumes Vi are not germane to the model, and
must be replaced by graph quantities since our goal is a graph model for
this dynamics. Clearly, the regional degree δi are closely related to the vol-
umes Vi, and for cortical sheets, the relationship will be roughly linear. Un-
fortunately, limitations of connectivity and regional volume measurements,
combined with the need to integrate both cortical and subcortical nuclei,
precludes a straightforward relationship. Thus, for the purpose of this paper
we propose two simple alternatives: linear: Vi ∝ δi, and sub-linear: Vi ∝

√
δi.

The former is preferable if considering only the cortical sheet, the latter if
considering subcortical nuclei as well (since their size is disproportionally
lower than their inter-regional connectivity would suggest).

After substituting regional volumes by their respective degree and con-
catenating over i, Eq. 3 easily expands to the entire network with arbitrary
topology:

dx(t)

dt
= −βLx(t), (4)

where the matrix L is the well-known network Laplacian, whose exact
form will depend on which of the above two definitions of regional volume is
used. For the former definition, we obtain L = I − ∆−1C, where ∆ is the
diagonal matrix with δi = Σjci,j as the ith diagonal element. For the latter
definition, we have

L = I −∆−1/2C∆−1/2. (5)

In the remainder of this paper we use the second definition because it is
preferable when including subcortical regions, and empirically gives networks
with a closer match to resting state data. On numerical grounds too it is
preferable, since it is symmetric and nonnegative definite, as described in
previous graph studies [2]. The corresponding eigenvalues are all between 0
and 2.

The network diffusion equation 4 has an explicit solution

x(t) = exp(−βLt)x0,

which defines the evolution of the initial configuration x0 under subsequent
graph diffusion process on G.
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2.5. A closed form solution of the graph diffusion model for functional brain
networks

At time t the effect of an initial configuration, with only region i active,
is given by x(t) = exp(−βLt)ei, where ei is the cardinal unit vector in the
ith direction. Collecting the configurations due to all regions we obtain

x(t) = exp(−βLt) (e1 | · · · | eN) .

We hypothesize that the configuration at time t of an initial configuration
involving only region i is simply the functional connectivity of i with all other
regions. Therefore we obtain

Cf (t) = exp(−βLt).

Here the functional connectivity matrix Cf is shown as a function of network
diffusion time. Note that due to the eigen-decomposition of L described
above, we have Cf (0) = I, and Cf (∞) = 0. That is, regardless of the un-
derlying structural network (as long as it is not disconnected), if no time is
allowed for diffusion, there are simply no connections between brain regions;
and in the steady state, all regions are connected to all other regions equally.
Between these two extremes, a spectrum of functional networks exist. We
hypothesize that the network diffusion time necessary to match the observed
functional network will depend on the signal being interrogated (whether
BOLD, EEG or MEG) and various details regarding action potentials and
their speed of propagation through various neuronal populations. Rather
than minutely modeling these parameters, we simply hypothesize that at
a critical time constant tcrit, to be determined experimentally, the network
Cf (tcrit) will match the observed functional network, or we have

Cf (tcrit) = exp(−βLtcrit). (6)

Since the eigen decomposition L = UΛU t is dominated by a few very small
eigenvalues, the hypothesized functional networks should also be similarly
dominated by these eigenmodes. At small diffusion time, only the first eigen-
mode will be present, giving

Cf (tsmall) ≈ e−βλ1tu1u
t
1,

where λ1 and u1 are known from L = UΛU t.
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Abdelnour, Voss, Raj. Network diffusion accurately 
models the relationship between structural and 
functional brain connectivity networks. 
NeuroImage 2014
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SPECTRAL” GRAPH THEORY OF SC-FC
• SC and FC are related by graph spectra (eigens)

Abdelnour, Voss, Raj. NeuroImage 2014
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Network Eigenmodes of the Structural Connectome

Wang, Owen, Mukherjee, Raj, PLoS Comput Biol (2017)
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Structural Eigenmodes and Resting State fMRI 
Networks

Atasoy et al., Neuroscientist
(2017)Wang et al., 

PLoS Comput Biol
(2017)

Abdelnour et al, 
Neuroimage (2018) Becker et al, 

Sci Rep (2018)

,
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GRAPH EIGENMODES CAN SPARSELY 
REPRESENT FC

Abdelnour, …, Raj. Neuroimage (2014, 
2018)

Atasoy, 2016
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SPECTRAL GRAPH THEORIES OF FMRI AND FC

Ashish Raj
Department of Radiology and Biomedical Imaging
Graduate Program in BioEngineering
UCSF

• Christopher J Honey, Rolf Kötter, Michael Breakspear, and Olaf Sporns. Network structure of cerebral cortex shapes 
functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104(24):10240–
10245, 2007

• Farras Abdelnour, Henning U. Voss, and Ashish Raj. Network diffusion accurately models the relationship between 
structural and functional brain connectivity networks. NeuroImage, 90:335–347, 2014

• Selen Atasoy, Isaac Donnelly, and Joel Pearson. Human brain networks function in connectome-specific harmonic 
waves. Nature Communications, 7:10340, 2016

• Farras Abdelnour, Michael Dayan, Orrin Devinsky, Thomas Thesen, and Ashish Raj. Functional brain connectivity is 
predictable from anatomic network’s Laplacian eigen-structure. NeuroImage, 172:728–739, 2018
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INTRODUCING A “COMPLEX” LAPLACIAN

• Novel concept in brain graph theory

• Delays	become	phases	in	Fourier	space:	ℱ(𝑥 𝑡 − 𝜏!,# = 𝑋 𝜔 𝑒$% &!,#'

• Hence define a complex connectivity matrix 𝐶∗ 𝜔 = {𝑐)*𝑒$% &$%'}
where delays come from global speed constant: 𝜏)* =

+&'
,

and the complex Laplacian
ℒ 𝜔 𝑣, 𝛼 = 𝐼 − 𝛼𝐶∗ 𝜔 𝑣)

• Define a ”wavenumber” 𝑘 = 𝜔/𝑣, then we define ℒ 𝑘, 𝛼

(rather than to the actual action potentials thereof). Although the internal
dynamics of this isolated neural population is complex and likely chaotic, in
keeping with our emphasis on simple linear models, we allow the simplest pos-
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𝑡 → 𝑡 − 𝜏!,#

Xie, Cai, Damasceno, Nagarajan, Raj. Emergence of canonical functional 
networks from the structural connectome, NeuroImage, 2021



WHAT DO THESE EIGENMODES LOOK LIKE?

Xihe Xie, Chang Cai, Pablo F. Damasceno, Srikantan S. Nagarajan, Ashish Raj, Emergence of canonical 
functional networks from the structural connectome, NeuroImage, 2021



COMPLEX LAPLACIAN EIGENMODES FIT CANONICAL FCN’S
● A few e-modes are sufficient to predict any FCN
● Complex e-modes are better than real ones; and both are better than random conns

● Complex e-modes respond to specific FCNs

X Xie, C Cai, P Damasceno, S Nagarajan, A Raj, Emergence of canonical functional networks from the structural connectome, NeuroImage, 2021
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STRUCTURE-FUNCTION MAPPING
• Highlighting the eigen-mapping technique:

• Reasonable performance with very simply approach
• Exploits the relationship between the eigenvalues and eigenvectors of the FC and SC (esp latter’s 

Laplacian)
• FC eigenvectors == Laplacian eigenvectors
• FC eigenvalues = func(Lap eigenvalues)

• Example results Original: 
Network-
diffusion

Series 
expansion 
on Lap e-
values + 
rotation 
matrix

Joint 
eigen-

modes of 
FC and 

Lap

Ghosh, Raj, Nagarajan. submitted
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IMPROVING SC-FC CORRESPONDENCE USING GRAPH 
SPECTRA

• Further improvements can come from better mapping between FC and SC e-values
• E.g. replace exponential decay with Gamma function 
• Adding latent and hard-to-measure inter-hemispheric connections between homologous regions 

greatly improves performance
Cummings J, Sipes B, Mathalon D, Raj A. Predicting Functional Connectivity from Observed and Latent 
Structural Connectivity via Eigenvalue Mapping. Frontiers in Neuroscience, 2022.

• Future extensions could explore other data-driven mappings
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CAN MODELS FIT SPECTRAL FEATURES (0 – 0.25 HZ) OF FMRI?

Need new analysis methods! 

Presenting a simple rate model for fMRI
• Signal equation

• Laplacian Matrix

• Graph equation

Frequency-response of fMRI can be explicitly 
written as sum over eigenmodes of Lap! 

Eigenmodes predict spatial patterns

Each pattern has a spectral response that is a 
function of e-values
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RESULTS – SGM FOR FMRI

• SGM predicts both FC matrix and regional power spectra of fMRI
• Fitted model parameters may be interpreted as “computational biomakrkers” of brain state or 

disease?
• Perhaps the first model that predicts and exploits higher-frequencies of fMRI?
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IS THIS SAME AS SPECTRAL DCM?

Spectral DCM also seeks frequency-dependent generative model of fMRI
• DCM Signal equation

𝑑𝑥(𝑡)
𝑑𝑡 = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑣(𝑡)

• In Fourier domain, written as transfer function involving the cross-spectral density of x and v: 

𝑃𝑆𝐷! 𝜔 = 𝑇𝐹 𝜔 𝑃𝑆𝐷" 𝜔
• Usually, v is assumed an autocorrelative signal
• Both SGM and spectral DCM use spectral features of signal
• BUT: this is where similarities end

• Spectral DCM: estimate 𝐴 = {𝑎!"}
• SGM: use a known matrix ℒ, fit for global parameters that determine shape of spectral response
• Hence SGM seeks a structure-function model, DCM seeks effective connectivity 
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MEG AND EEG: A SPECTRAL GRAPH MODEL OF HIGHER 
BRAIN OSCILLATIONS

Ashish Raj, PhD
Department of Radiology and Biomedical Imaging
UCSF
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Local neural 
assemblies 𝑔!!, 𝑔"", 𝑔!", 

𝜏!, 𝜏"
White noise

Macroscopic long-
range connections 

𝜏!, 𝛼, 𝜏#, 𝑣

Spectral graph theory model (SGM)

Str connectivity 
matrix

Frequency spectra --
Magnetoencephalography
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MODELING HIGHER FREQUENCIES – EEG/MEG
• Need to introduce conduction speed, cortical processing delays
• The model is no longer network diffusion, strictly
• Closed form solution of steady state frequency behaviour

𝑿 𝜔 = (
$

)𝒖𝒊(𝜔)𝒖𝒊𝑯(𝜔

𝑗𝜔 + 1
𝜏'
𝜆$(𝜔)𝐹( 𝜔

𝐻)*+,) 𝜔 𝑷 𝜔

𝑑𝑥(/$ 𝑡
𝑑𝑡

= −
1
𝜏(/$

𝑓(/$ 𝑡 ∗ 𝑥(/$ 𝑡 +
1
𝜏(/$

𝑓(/$ 𝑡 ∗(
.,/

𝑐./𝑥(/$ 𝑡 − 𝜏./0 + 𝑝(/$ 𝑡

Complex 
Connectome

C* 𝜔|𝒗 = {𝑐"# exp(-i 𝜏"#$ 𝜔)}

Raj et al. Spectral graph theory of brain 
oscillations. Human Brain Mapping 2020
Verma et al. SGM Revisited, Neuroimage 2022

Gamma-shaped 
neural response

function

eigenmodes

eigenvalues

ℒ 𝜔 𝑣, 𝛼 = 𝐼 − 𝛼𝐶∗ 𝜔 𝑣)
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RESULTS

• SGM correctly fits empirical MEG power spectra
• Does better than NMM
• Sensitive to model parameters (need to be optimized)
• Simultaneously predicts spatial patterns!

Raj et al. Spectral graph theory of brain 
oscillations. Human Brain Mapping 2020

Raj, Ashish, et al. Human brain mapping (2020)

A
lp

ha
Be

ta

Verma et al., 2022, Neuroimage
Band-specific spatial distribution



RAJ LABORATORY, CHINA BASIN, UCSF

SGM VS NEURAL MASS MODEL

• Large # of coupled non-linear 2nd order Diff Eqns
• Numerical integration used to simulate over long 

model times
• Activity and FC patterns indirectly observed from 

simulations
• Parameter inference is very tough

• Requires step-wise, manual or heuristic 
optimization

Neural Mass Model Spectral Graph Model

• Linear vector-valued 1st order Diff Eqn
• Has closed-form solution in Fourier domain!
• Activity and FC directly given by solution
• Going to linear does not cause loss of 

performance!
• Frequently better than coupled NMMs

• Parameter inference is simple and fast, no
hand-selection needed

• Node-level local NMMs coupled via connectome
• Solved by differential equations
• Can simulate neural activity on the whole brain network
• Proven in M/EEG and fMRI
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SGM: STABILITY AND DYNAMICS

Ashish Raj, PhD
Department of Radiology and Biomedical Imaging
UCSF
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Local neural 
assemblies - 𝑔>>, 𝑔%%, 

𝑔>%, 𝜏>, 𝜏%
White noise

Macroscopic long-
range connections -

𝜏>, 𝛼, 𝜏?, 𝑣

Spectral graph theory model (SGM)

Structural connectivity 
matrix (Diffusion MRI)

Frequency spectra --
Magnetoencephalogr

aphy
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With 
noise

Without 
noise

Local neural assemblies - simulations

Verma et al., 2022, Network Neuroscience

• In a linear system, stability is a function strictly of model parameters, not of input noise
• Recall in nonlinear coupled NMMs, meta-/multi-stability  is governed by noise
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Stability of local SGM

Stability regime Frequency spectra in the stable regime

Verma et al., 2022, Network Neuroscience
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Stability of macroscopic SGM

Stability regimes Simulations in 
different regimes

Peak frequency of macro signal 

Frequency (Hz)

Verma et al., 2022, Network Neuroscience
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Dynamics in MEG è dynamics in model parameters

Verma et al., 2022, Network Neuroscience
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SGM: APPLICATIONS IN NEUROLOGICAL DISEASE
(ALZHEIMER’S)

Ashish Raj, PhD
Department of Radiology and Biomedical Imaging
UCSF
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FROM MEG AND FMRI TO BIOLOGICAL PARAMETERS TO DISEASE BIOMARKERS

• Wish	to	infer	model	parameters	that	give	rise	to	given	MEG,	EEG	and	fMRI
• SGM	gives	a	small	set	of	only	6	biophysically	interpretable	global	model	
parameters

• Local	model	inferred	by	fitting	regional	frequency	spectra
• Global	parameters	by	fitting	regional	spectra	AND	spatial	distributions	of	
different	frequency	bands	

• Application:	inferred	parameters	can	serve	as	biomarkers	of	disease	
• e.g. Schizophrenia,	autism,	epilepsy,	Alzheimer,…

Fitted model 
parameters (with 

biophysical 
meaning)

Extension: time-varying (dynamic) models to capture brain states
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LOCAL NEURAL ASSEMBLIES – APPLICATION TO AD

Ranasinghe et al., 2022, eLife, in print

• AD	shows	a	strong	down-shift	in	alpha	band	power	and	frequency
• Strong up-shift in delta-theta power

• First we	explore	local-only	models
• i.e. local (mesoscopic) parameters	as	biomarkers
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MACROSCOPIC SGM – APPLICATION TO AD
• Fitting	macroscopic	SGM	only	(keep	all	local	parameters	uniform)
• SGM	needs	only	6	biophysical	global	parameters

Example: global fitting to MEG in 
Alzheimer’s disease

Verma et al., 2022, submitted

Single-most important 
change
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• Sanjay Ghosh
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• Fei Jiang
• Kamalini Ranasinghe

Please contact for inquiries and job opportunities
• Ashish.raj@ucsf.edu
• https://radiology.ucsf.edu/research/labs/brain-networks-lab
• Lots of code on GitHub: https://github.com/Raj-Lab-UCSF

WE ARE HIRING!
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